

РУКОВОДСТВО

ПО ЭКСПЛУАТАЦИИ

Содержание

1.	Меры предосторожности и техника безопасности	3
2.	Комплектация	6
3.	Общее описание	7
4.	Основные характеристики	8
5.	Описание панели	9
6.	Установка и эксплуатация	11
7.	Техническое обслуживание	14
8.	Ди <mark>агностика неиспра</mark> вностей	15
9.	В помощь сварщику	17
10.	Гарантийный талон	26

Пожалуйста, перед установкой и использованием данного оборудования **внимательно** прочитайте и разберитесь в данном руководстве.

Компания оставляет за собой право вносить изменения в данное руководство и не обязана предупреждать об этом заранее.

В данном руководстве возможны неточности. Пожалуйста, свяжитесь с нами при их обнаружении.

Руководство по эксплуатации издано 20 февраля 2018 года.

www.svarma.ru.

Производитель: Shanghai Hugong Electric Group Co. LTD.

1. Меры предосторожности и техника безопасности

Нарушение техники безопасности при проведении сварочных работ часто приводит к самым печальным последствиям – пожарам, взрывам и, как следствие, травмам и гибели людей.

Также возможны следующие травмы при проведении сварочных работ: поражение электрическим током, ожоги от шлака и капель металла, травмы механического характера.

Для предотвращения всех этих положений важно неукоснительно соблюдать меры предосторожности:

Подготовить рабочее место согласно технике безопасности:

При дуговой электросварке брызги расплавленного металла разлетаются на значительные расстояния, что вызывает опасность пожара. Поэтому сварочные цеха (посты) должны сооружаться из негорючих материалов, не допускается скопление смазочных материалов, ветоши и других легковоспламеняющихся материалов в местах проведения сварочных работ.

Для быстрой ликвидации очагов пожаров рабочее место должно быть оснащено средствами пожаротушения: огнетушитель и емкость с водой, которые должны находиться в легкодоступном месте.

Пожар может начаться не сразу, поэтому при завершении сварки следует внимательно осмотреть место проведения работ: не тлеет ли что-нибудь, не пахнет ли дымом и гарью.

- Необходимо иметь профессиональную подготовку для работы с оборудованием.
- Сварщик должен иметь действующее разрешение для работы со сварочными металлами.
- Сварщик должен пройти медицинское освидетельствование.

Обеспечить необходимую защиту:

- Необходимо проверить изоляцию всех проводов, связанных с питанием источника тока и сварочной дугой, устройства геометрически закрытых включающих устройств, заземление, корпусов сварочных аппаратов. Заземлению подлежат: корпуса источников питания, аппаратного ящика и вспомогательное электрическое оборудование. Сечение заземляющих проводов должно быть не менее 2,5 мм².
- Необходимо использовать различные средства индивидуальной защиты, такие как: сварочные маски, специальную брезентовую одежду, брезентовые рукавицы, кожаные ботинки.
- При сварке необходимо использовать электрододержатель с хорошей изоляцией, которая гарантирует, что не будет случайного контакта токоведущих частей электрододержателя со свариваемым изделием или руками сварщика.
- Необходимо работать в исправной сухой спецодежде и рукавицах. При работе в тесных отсеках и замкнутых пространствах обязательно использование резиновых галош и ковриков, источников освещения с напряжением не выше 6-12 В.
- Необходимо проводить сварочные работы только в хорошо вентилируемых помещениях или использующих вентиляционное оборудование.

Для сведения к минимуму возможности получения травм и увечий, ознакомьтесь с их причинами и мерами предосторожности:

причинами и мерами предостор	Электрический ток (может привести к серьезным увечьям или даже смерти). Для предотвращения надо: установить заземление перед началом работы; никогда не дотрагиваться до деталей, подключенных к источнику питания, голыми руками или, находясь в мокрых перчатках или одежде.
	 Дым и газ (может быть вредным для здоровья). Для предотвращения надо: избегать вдыхания дыма и газа во время сварки; при сварке находиться в хорошо проветриваемом помещении или использовать вентиляционное оборудование.
	Световое излучение (может привести к повреждению глаз или ожогам). Для предотвращения надо: для защиты ваших глаз и тела использовать подходящую сварочную маску и защитную одежду; для защиты наблюдателей использовать подходящие сварочные маски и ширмы.
	 Неправильная работа (может быть причиной пожара или даже взрыва). Для предотвращения надо: убедиться в отсутствии легковоспламеняющихся материалов рядом с местом работы, т. к. сварочные искры могут быть причиной пожара; иметь поблизости огнетушитель; не использовать данное оборудование для разогрева труб.
	Большая температура изделия (может привести к ожогам). Для предотвращения надо: не трогать горячее изделие голыми руками сразу после сварки. Дать ему остыть; при длительной сварке необходимо использовать охлаждение.

	Магнитные поля (оказывают действия на электронные							
	стимуляторы сердца).							
2 Aug	Для предотвращения надо:							
	• людям, имеющим электронные стимуляторы сердца,							
·/·· >>>0	перед работой необходимо проконсультироваться с							
	врачом.							
	Движущиеся части (могут привести к увечьям).							
	Для предотвращения надо:							
	• избегать контакта с движущими частями, например, с							
вентиляторами;								
	• все двери, панели, крышки и другие защитные устройства							
	должны быть закрыты во время работы.							

При проблемах с обо<mark>рудова</mark>нием необходимо обратиться к профессиональной помощи:

- Используйте данное руководство при возникновении каких-либо трудностей при установке или работе.
- Обрат<mark>итесь в сервисн</mark>ый центр поставщика для профессиональной помощи, если у вас все еще о<mark>стались вопросы</mark> после прочтения данного руководства.

Производственные условия:

- Сварка должна выполняться в сухой окружающей среде с влажностью не более 90 %.
- Температура окружающей среды должна быть между -10 °С и +40 °С.
- Избегайте сварки под открытым небом, если нет защиты от солнечного света или дождя.
- Избегайте сварки в среде с большим содержанием пыли или коррозийного химического газа.
- Всегда сохраняйте изделие сухим и не помещайте его во влажную землю или лужи.

2. Комплектация

Название	Кол-во	БАРС Profi MIG-207 D	БАРС Profi MIG-257 D
Аппарат	1 шт	+	+
Сетевой кабель (2 м)	1 шт	+	+
Клемма заземления (3 м)	1 шт	+	+
Токосъемный наконечник	2 шт	+	+
Свар <mark>очная горелка (3 м</mark>)	1 шт	+	+
Рук <mark>ав воздушный</mark> (3 м)	1 шт	+	+
Фи <mark>ксатор газовог</mark> о рукава	2 шт	+	+
Рук <mark>оводство пользователя</mark>	1 шт	+	+

Комплектация может быть незначительно изменена заводом-изготовителем

3. Общее описание

Сварочный полуавтомат представляет собой аппарат с механизированной подачей сварочной проволоки, но перемещаемый в процессе сварки вручную. Сварочные полуавтоматы используются для сварки металлических конструкций из различных видов сталей и сплавов. Сварочные полуавтоматы часто можно увидеть в автосервисах, ремонтных мастерских и на строительных площадках. На сегодняшний день полуавтомат - один из наиболее распространенных видов сварочных аппаратов.

С помощью аппаратов БАРС доступны следующие виды сварки:

- Ручная дуговая сварка (ММА)
- Сварка в среде защитных газов (MIG/MAG).

Инверторный св<mark>арочный полу</mark>автомат – устройство повышенной частоты.

Высокочастотная составляющая позволяет:

- Снизить его габариты и вес.
- Существенно повысить КПД источника питания.
- Исключить шумовое загрязнение почти полностью, т.к. рабочая частота выше диапазона звуковых частот.
- Обеспечить хорошие технологические свойства.
- Обеспечить широкий предел регулирования.

Преимущества:

- Высокое качество сварочного шва свариваемых деталей, имеющих разную толщину.
- Сварка деталей, имеющих небольшую толщину.
- Широкий диапазон свариваемых материалов (алюминий, магний, титан, никель и др.).
- Зона термического влияния очень узкая, поэтому деталь деформируется очень мало или вовсе не деформируется.
- Простота применения, не требующая высокой квалификации сварщика, ввиду автоматизации процесса.
- Возможность сварки во всех пространственных положениях.
- Возможность использования 15кг катушки с проволокой.
- Устойчивая работа даже при пониженном напряжении.
- Наличие цифрового дисплея.
- Увеличенное значение ПН позволяет работать дольше без перерыва.
- Современные технологии управления позволяют быстро настроить сварочный ток.
- Минимальное разбрызгивание.
- Сварка короткой дугой.
- Минимальный перегрев свариваемого изделия.
- Высокий КПД и быстродействие.
- Стабильный ток.

4. Основные характеристики

Таблица 1. Основные характеристики

Тип	БАРС Profi MIG-207 D	БАРС Profi MIG-257 D	БАРС Profi MIG-257 D
Параметры электросети (В)	220±15%	220±15%	380 ±15%
Частота (Гц)	50/60	50/60	50/60
Максимальны <mark>й входящий ток (A</mark>)	35.8	48.8	13.0
Потребляем <mark>ая мощность (</mark> eff), (кВт)	4.75	6.35	5.15
Напряжение <mark>без нагрузки (</mark> B)	56	56	56
Пределы ра <mark>бочего</mark> напряжения (В)	16.5 ~ 24	16.5 ~ 26.5	16.5 ~ 26.5
Пределы ре <mark>гул</mark> иро <mark>вания т</mark> ока (A) (MIG/MAG)	50 ~ 200	50 ~ 250	50 ~ 250
Максимальн <mark>ый</mark> сварочный ток (A) (MIG/MAG)	200	250	250
Пределы ре <mark>гулирования то</mark> ка (A) (MMA)	50 ~ 160	50 ~ 200	50 ~ 200
Максимальн <mark>ый сварочный то</mark> к (A) (ММА)	160	200	200
Пределы ре <mark>гулирования скор</mark> ости подачи проволоки (м/мин)	2.5 ~ 13	2.5 ~ 13	2.5 ~ 13
Диаметр сваро чной проволоки (мм)	0.8 ~ 1.0	0.8 ~ 1.0	0.8 ~ 1.0
Продолжительность нагрузки (%)	60	60	60
КПД (%)	85	85	85
Коэффициент мощности	0.68	0.70	0.70
Класс защиты	IP21S	IP21S	IP21S
Класс изоляции	F	F	F
Габариты (мм)	635x350x530	635x350x530	635x350x5 <mark>3</mark> 0
Вес (кг)	30.2	30.2	30.2

Основные характеристики могут быть незначительно изменены заводом-изготовителем

5. Описание панели

5.1 Передняя панель (MIG-207 D, MIG-257 D)

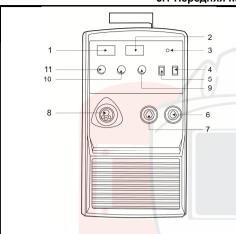


Рис.1. Передняя панель

- 1. Дисплей (показывает значение тока)
- 2. Дисплей (показывает значение напряжения)
- 3. Индикатор «Защита» (загорается при срабатывании термозащиты)
- 4. Переключатель "Диаметр 0,8/1,0"
- Переключатель режимов MMA/MIG (MAG)
- 6. "-" выходной соединительный разъем
- 7. "+" выходной соединительный разъем
- 8. Разъем для подключения сварочной горелки
- 9. Регулятор индукции
- 10. Регулятор сварочного тока
- 11. Регулятор напряжения

5.2 Задняя панель (MIG-207 D, MIG-257 D)

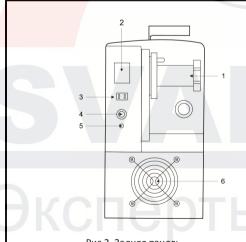


Рис.2. Задняя панель

- Кронштейн для фиксации катушки с проволокой
- 2. Выключатель электросети
- 3 Розетка 36 В.
- 4 Сетевой кабель
- 5. Разъем для подключения газа
- 6. Вентилятор

5.3 Описание некоторых функций

Переключатели

Переключатель режимов MMA/MIG (MAG)

Когда включен режим ММА, доступна ручная дуговая сварка. Когда включен режим МІС (МАС), доступна полуавтоматическая сварка в среде защитных газов.

Переключатель диаметра используемой проволоки (0.8/1.0)

Позволяет и<mark>зменять пар</mark>аметры автоматической предустановки аппарата в соответствие с выбранным ди<mark>ам</mark>етром проволоки.

Регуляторы значений

Регулятор индуктивности

Для уменьшения разбрызгивания электродного металла необходимо сжимающее усилие, возникающее в проводнике при коротком замыкании, сделать более плавным. Это достигается введением в источник сварочного тока регулируемой индуктивности. Величина индуктивности определяет скорость нарастания сжимающего усилия. При малой индуктивности капля будет быстро и сильно сжата - электрод начинает брызгать. При большой индуктивности увеличивается время отделения капли, и она плавно переходит в сварочную ванну. Сварной шов получается более гладким и чистым.

Регулятор напряжения

Позволяет регулировать значение напряжения во время проведения сварочных работ.

Регулятор сварочного тока

Позволяет регулировать значение тока во время проведения сварочных работ.

6. Установка и эксплуатация

Внимание: устанавливайте аппарат внимательно, согласно шагам, указанным ниже. Выключайте переключатель тумблера перед любыми работами.

Класс защиты оборудования IP21S, поэтому избегайте работы под дождем.

6.1 Установка

Подключение аппарата к сети

Для подключения аппарата к сети, необходимо использовать сетевой кабель. Его необходимо подключить с требуемыми параметрами и проверить соединение, т.к. окисления могут привести к серьезным последствиям и даже поломке. Другой конец сетевого кабеля подключите к соответствующему разъему на задней панели аппарата через предохранитель, если кабель уже не подключен. Заметьте, что аппараты MIG-207 D и MIG-257 D (220B) необходимо подсоединить к однофазной питающей сети с напряжением 220 B, MIG-257 D (380B) необходимо подсоединить к трехфазной питающей сети с напряжением 380 B. Затем проверьте с помощью мультиметра, чтобы технические данные напряжения и частоты питающей сети соответствовали техническим параметрам аппарата.

Подсоединение катушки со сварочной проволокой

Открутив крышк<mark>у д</mark>ержателя, закрепите катушку сварочной проволоки на оси держателя проволоки. Убедитесь, что ничего не мешает подаче проволоки, а катушка плотно сидит на держателе (Рис.2).

Наденьте перчатки, распакуйте проволоку и отрежьте загнутый конец. Ослабьте винт прижимного ролика, отведите ручку прижимного винта на себя, поднимите верхний прижимной ролик, уложите проволоку в канавку подающего ролика и протяните ее через разъем для горелки. Верните ручку прижимного винта в исходное положение, затяните. Канавка ролика должна соответствовать диаметру проволоки. Затем пропустите некоторое количество проволоки через сварочную горелку и нажмите на кнопку горелки, чтобы проволока вышла из горелки.

6.1.1. ММА режим

Сварочные кабели, такие как кабель электрододержателя и кабель клеммы заземления, подключаются к соответствующим разъемам "+" и "-" в зависимости от применяемых электродов. Для прямой полярности кабель электрододержателя необходимо вставить в разъем "-", а кабель клеммы заземления – в разъем "+" (Рис.1).

Выбирать полярность надо в зависимости от конкретной ситуации. При неправильном подключении появляются такие явления, как: нестабильная дуга, чрезмерное разбрызгивание и прилипание электрода. Для решения данных проблем измените соединение посредством перемены местами сварочных кабелей.

Кабели должны быть плотно подсоединены, так как слабое подключение снижает эффективность работы.

Внимание: осмотр и сборка оборудования могут производиться только тогда, когда аппарат отключен от сети.

Включение аппарата и подготовка к началу работы

После выполнения действий, указанных выше, переведите тумблер в положение "Вкл.", аппарат начнет свою работу с включения амперметра и работы вентилятора.

Выставьте переключатель режимов MMA/MIG в режим MMA (Рис.1).

Задайте необходимую величину сварочного тока согласно типу и размеру электрода (смотрите таблицы 1-5 в разделе "В помощь сварщику").

Обращайте внимание на упаковку электродов, где указывается их полярность и ток.

Процесс сварки

Держите маску перед лицом. Легким касанием оголенного кончика электрода зажгите и приступите к работе. Затем, при появлении дуги установите дистанцию от свариваемого изделия, которая должна

равняться диаметру электрода. Помните, что угол наклона электрода должен составлять 20-30°.

Окончание работы

После выполнения всех необходимых работ, выключите аппарат посредством перевода тумблера в положение "Выкл." (Рис.2). Проверьте, ничего ли не тлеет вокруг, т.к. пожар может начаться не сразу, а через некоторое время.

6.1.2. MIG/MAG режим

Включение аппарата и подготовка к началу работы

Подключите аппарат в соответствующую электрическую сеть при помощи сетевого кабеля. Подсоедините газ, используя газовый рукав и разъем для подключения газа (Рис.2, п.5). Установите катушку с проволокой на кронштейн для фиксации катушки (Рис.2, п.1), затем установите проволоку на ролик соответствующего диаметра механизма подачи (Рис.2). Подключите газовую горелку (Рис.1, п.8). Подсоедините провод полярности в соответствии с выбранной полярностью и провод клеммы заземления. Включите аппарат, переведя тумблер выключателя электросети в положение «Вкл.», аппарат начнет свою работу с включения амперметра и вентилятора (Рис.2, п.2). Пропускаем проволоку внутри горелки при помощи кнопки протяжки проволоки, либо на максимальной скорости подачи проволоки.

Снабжение газом: Система газоснабжения, состоящая из газового баллона, редуктора и газового шланга, должна иметь плотные соединения, чтобы обеспечить надежную подачу газа, что является чрезвычайно важным для осуществления сварки в среде защитных газов. (Примерная схема показана на рисунке ниже).

He забудьте заземлить аппарат для предотвращения возникновения статического электричества и утечки токов.

Внимание: осмотр и сборка оборудования могут производиться только тогда, когда аппарат отключен от сети.

При сварке в среде углекислого газа необходимо использовать постоянный ток обратной полярности, так как сварка током прямой полярности приводит к неустойчивому горению дуги.

Откройте вентиль на газовом баллоне. Для подачи газа нажмите кнопку на горелке и установите расход защитного газа с помощью редуктора.

Установите контактный наконечник с внутренним диаметром, соответствующим диаметру сварочной проволоки, отпустите прижимной ролик, отрегулируйте усилие прижима.

Выставьте переключатель режимов MMA/MIG в режим MIG.

Используйте таблицы 6-7 в разделе «В помощь сварщику» для выставления необходимых параметров.

Процесс сварки

Поднесите горелку к заготовке. Нажмите кнопку на горелке, касание металла обеспечит поджиг дуги. При наличии дуги приступайте к процессу сварки.

После окончания сварки, не убирайте горелку и не выключайте подачу газа в течение 1 секунды. Данное действие необходимо, чтобы защитить сварочный шов от попадания ненужных газов, и, следовательно, избежать возникновения возможных дефектов.

Окончание работы

После выполнения всех необходимых работ, выключите аппарат посредством перевода тумблера выключателя электросети в положение "Выкл." (Рис.2, п.2). Проверьте, ничего ли не тлеет вокруг, т.к. пожар может начаться не сразу, а спустя некоторое время.

6.2 Эксплуатация

Вентиляция

Данный аппарат может создать сильный сварочный ток, у которого есть строгие требования охлаждения и которые нельзя достичь посредством только естественной вентиляции. Поэтому встроенный вентилятор необходим для эффективного охлаждения и устойчивой работы аппарата. Перед началом работ сварщик должен удостовериться, что жалюзи вентилятора (решетки) аппарата раскрыты и ничем не заблокированы. Минимальное расстояние между аппаратом и соседними объектами должно составлять 30 см. Хорошая вентиляция является залогом нормальной работы и продолжительной жизни аппарата.

Перегрузка

ПН - продолжительность нагрузки. ПН для аппарата MIG-207D при работе на максимальном токе (для просмотра диапазона сварочного тока, пожалуйста, обратитесь к таблице 1. «Основные характеристики»), равно 60% из расчета 10 минут, где 6 минут - работа, 4 минуты — отдых. Это значит, что при работе на максимальном токе более 6 минут происходит перегрузка аппарата с последующим нагревом. ПН для аппарата MIG-257D при работе на максимальном токе (для просмотра диапазона сварочного тока, пожалуйста, обратитесь к таблице 1. «Основные характеристики»), равно 60% из расчета 10 минут, где 6 минут - работа, 4 минуты — отдых). Это значит, что при работе на максимальном токе более 6 минут происходит перегрузка аппарата с последующим нагревом. Перегрузка может значительно сократить срок эксплуатации аппарата.

Перенапряжение

Для просмотра диапазона напряжения электропитания аппарата, пожалуйста, обратитесь к таблице 1. «Основные характеристики». Оборудование имеет функцию автоматической компенсации напряжения сети, которая гарантирует, что сварочный ток изменяется в пределах данного диапазона. В случае если входное напряжение сети превышает допустимое значение, возможно повреждение компонентов аппарата.

Перегрев

Внезапная остановка может произойти из-за перегрева. При перегреве аппарата загорается индикатор «Защита», и процесс сварки автоматически останавливается. При этом, не отключая аппарат, дождитесь, пока внутренняя температура не станет соответствовать стандартному диапазону. И погаснет индикатор.

7. Техническое обслуживание

Внимание: следующие действия требуют достаточных профессиональных знаний в области сварки и электричества и всестороннем знании безопасности. Сварщики должны иметь свидетельства о квалификации. Удостоверьтесь, что входной кабель аппарата выключен из сети, прежде чем раскрыть сварочный аппарат.

- Периодически проверяйте, находится ли аппарат, особенно внутренняя схема и соединения кабелей и разъемов, в хорошем состоянии. Затяните расшатанные соединения. При обнаружении окисления, устраните наждачной бумагой и затем повторно соедините.
- Держите руки, волосы и инструменты далеко от движущихся частей, таких как вентилятор, дабы избежать травм или повреждение аппарата.
- Очищайте периодически от пыли сухим и чистым сжатым воздухом. Если аппарат находится в среде сильного задымления или загрязнения, чистите аппарат ежедневно. Давление сжатого воздуха должно быть надлежащего уровня, чтобы избежать повреждения мелких деталей.
- Избегайте дождя, воды и пара, пропитывающего аппарат. При попадании воды высушите аппарат и проверьте изоляцию (включая изоляцию между соединениями).
- Периодически проверяйте, находится ли покрытие изоляции всех кабелей в хорошем состоянии. При нахождении каких-либо повреждений изоляции кабеля, повторно оберните его или замените.
- Если аппарат не используется в течение долгого времени, поместите его в первоначальную упаковку и поставьте в сухое место.
- Проводите работы при закрытом корпусе аппарата.

Пожалуйста, обратите внимание на то, что:

- Некачественное техническое обслуживание может привести к снятию аппарата с гарантии.
- Аппарат может быть снят с гарантии в случае попыток самостоятельного ремонта, а также нарушения заводской пломбировки.

8. Диагностика неисправностей

Внимание: если аппарат не отработал свой гарантийный срок, не производите ремонт самостоятельно.

Общий анализ сбоев и их решение:

Сбой	Причина	Решение
Аппарат включен, сигнальная лампа не горит, нет сварочного тока,	• Не работает выключатель сети	• Проверьте выключатель и при необходимости замените его
встроенный вент <mark>илят</mark> ор не работает	• Отсутствует сетевое напряжение	 Проверьте провода на наличие повреждений Проверьте хорошо ли соединены элементы сетевого кабеля
	• Обрыв силового кабеля	• Замените силовой кабель
Аппарат включен, горит сигнальная лампа, нет сварочного тока, встроенный вентилятор не работает	• Напряжение сети превышает допустимое значение	Проверьте напряжение сети. Выставите необходимое значение, согласно справочникам и таблицам
	• Ошибка в выборе питающей электросети 380В-220В	Проверьте по таблице основных характеристик и выберете необходимую электросеть
	Перепады входного тока в связи с неисправностью сетевого кабеля и отключение аппарата в связи с запуском режима защиты от сбоев	Проверьте сетевой кабель. При необходимости замените его Проверьте, хорошо ли соединены элементы сетевого кабеля
5 V 4	Частое включение и выключение аппарата в короткий промежуток времени приводит к запуску режима защиты от сбоев	Выключите аппарат и снова включите его не ранее, чем через три минуты
Аппарат включен, сигнальная лампа не горит, встроенный вентилятор работает, осциллятор не действует, поэтому невозможно поджечь дугу	• Внутренние неисправности	• Обратитесь за помощью в сервисный центр
жспе	• Включен режим защиты от сбоев	Выключите источник тока, подождите, пока индикатор погаснет, и снова включите аппарат
Аппарат включен, горит сигнальная лампа, дуги нет	• Включен режим защиты от перегрева	Не отключая аппарат, дождитесь момента, когда погаснет индикатор, и можете снова приступать к сварке
	• Внутренние неисправности инвертора	• Обратитесь в сервисный центр

	• Повреждение обратного кабеля • Замените его				
Перепады рабочего тока в процессе сварки	 Повреждение потенциометра Имеют место сильные перепады напряжения в сети, либо пропадает контакт в сетевом кабеле 	 Обратитесь в сервисный центр Проверьте сетевой кабель на наличие повреждений; Проверьте, хорошо ли соединены элементы сетевого кабеля 			
Чрезмерное разбрызгивание при ручной сварке	 Неверно выбрана полярность подключения сварочных кабелей 	 Поменяйте местами сварочные кабели, подсоединенные к разъемам "+" и "-" 			
В процессе сварки возникает чрезмерный уровень напряжения. Трудности при работе с электродами с щелочным покрытием	 Неверно выбрана полярность подключения сварочных кабелей 	• Поменяйте местами сварочные кабели, подсоединенные к разъемам "+" и "-"			

Примечание: при возникновении проблем, не указанных в данной таблице, позвоните в сервисный центр.

SVARMAru

9. В помощь сварщику

Данные советы и таблицы помогут вам в различных ситуациях, например, помогут вам подобрать правильный электрод для сварки, избежать некоторых дефектов или оказать первую помощь.

мижер AMM

Таблица 1. Настройка сварочного тока в зависимости от положения сварки

Покрытие Диаметр		Сварочный ток (А) при положении шва				
электрода	электрода (мм)	нижнем	вертикальном	потолочном		
Основное	Основное 2,5		60-80	55-75		
	3	90-110	80-100	70-90		
	4	120-170	110-150	95-135		
	5	170-210	150-190	-		
Рутиловое	2, <mark>5</mark>	70-90	60-80	55-75		
	3		80-115	75-105		
	4	140-190	125-170	110-155		
	5	180-230	165-205	-		

Таблица 2. Настройка сварочного тока в зависимости от полярности тока

Диаметр электрода	Ci					
(мм)	Обратная	Прямая	Напряжение на дуге (В)			
2	20-100	65-160	10-30			
3	100-160	140-180	20-40			
4	140-220	250-340	30-50			
5	220-280	270-360	40-60			

Таблица 3. Ориентировочные режимы сварки в зависимости от типа соединения и толщины

			Co	единение			
Толщина	Сті	ыковое	Тав	ровое	Нахлес	очное	
металла (мм)	Свароч. ток (A)			Диаметр электрода (мм)	Сварочный ток (A)	Диаметр электро <mark>да</mark> (мм)	
1	25-35	2	30-50	2	30-50	2,5	
1,5	35-50	2	40-70	2-2,5	35-75	2,5	
2	45-70	2,5	50-80	2,5-3	55-85	2,5-3	
3	70-120	3	70-130	3	75-130	3	
4	120-160	3-4	120-160	3-4	120-180	3-4	
5	130-180	3-4	130-180	4	130-180	4	
10	140-220	4-5	150-220	4-5	150-220	4-5	
15	160-250	4-5	160-250	4-5	160-250	4-5	
20	160-340	4-6	160-340	4-6	160-340	4-6	

Таблица 4. Зависимость диаметра сварочного провода от сварочного тока

Сварочный кабель						
Марок	КГ, КОГ					
Сварочный ток Сечение						
(A)	провода (мм²)					
100	10					
200	25					
300	35					
400	50					
500	70					

Таблица 5. В<mark>лия</mark>ние сварочного тока, напряжения дуги и скорости сварки на форму и размеры

С увеличением сварочного тока глубина провара увеличивается, ширина шва почти не изменяется.

С повышение напряжения ширина шва резко увеличивается, а глубина провара уменьшается. Это важно учитывать при сварке тонкого металла. Несколько уменьшается и выпуклость (усиление) шва. При одном и том же напряжении ширина шва при сварке на постоянном токе (особенно обратной полярности) значительно больше, чем ширина шва при сварке на переменном токе.

С увеличением скорости (до 40-50 м/ч), сначала глубина провара возрастает, затем уменьшается. При скорости более 70-80 м/ч основной металл не успевает прогреваться, и по обеим сторонам шва возможны подрезы.

MIG/MAG режим

Таблица 6. Выбор подачи проволоки и напряжения в зависимости от материала, диаметра проволоки и газа

Процесс/толщина метал.		1,0	мм	1,5	мм	2,0	мм	3,0	мм	4,0	мм	
Мате- риал	Диам. (мм)	Газ	Подача	Напряж.	Подача (м/мин)	Напряж.	Подача (м/мин)	Напряж.	Подача	Напряж.	Подача	Напряж.
Fe	0,8	CO ₂	2,5	19,0	4,5	19,5	7,0	21,0	11,0	27,0	13,0	29,0
Fe	1,0	CO ₂	2,0	18,0	2,5	19,0	3,0	20,0	4,5	21,0	6,0	22,5
Fe	1,2	CO ₂	1,0	18,0	2,0	20,0	2,5	21,0	3,5	22,0	4,5	23,0
Fe	0,8	ArCO ₂	3,0	16,0	6,0	18,0	7,5	19,5	11,0	20,0	14,0	26,0
Fe	1,0	ArCO ₂	2,0	15,0	3,0	16,0	4,0	17,0	6,0	19,0	8,0	20,0
Fe	1,2	ArCO ₂	1,5	16,5	2,5	17,5	3,5	18,0	4,5	20,5	5,5	20,5
Fe	1,6	ArCO ₂	,	-	1,0	17,0	2,0	18,0	2,5	18,5	3,0	19,5
CrNi	1,0	ArCO ₂	3,0	15,0	4,0	16,0	6,0	17,0	8,5	20,0	9,0	25,0
CrNi	1,2	ArCO ₂	2,0	15,0	3,0	16,0	3,5	16,5	6,0	18,0	8,0	24,0
Al	1,0	Ar	4,0	14,5	6,0	15,0	7,5	16,0	9,0	19,0	11,0	22,0
Al	1,2	Ar	3,5	13,0	5,0	15,0	8,0	16,0	9,0	17,0	10,0	18,0

Процесс/толщина метал.		6,0 мм		10,0 мм		
Мате-	Диам.	Газ	Подача	Напряж.	Подача	Напряж.
риал	(мм)	1 45	(м/мин)	(B)	(м/мин)	(B)
Fe	0,8	CO ₂	18,0	30,0	24,0	37,0
Fe	1,0	CO ₂	9,0	24,5	14,0	32,0
Fe	1,2	CO ₂	7,5	28,5	11,0	36,0
Fe	0,8	ArCO ₂	18,0	31,0	24,0	33,0
Fe	1,0	ArCO ₂	11,5	26,5	16,0	30,0
Fe	1,2	ArCO ₂	8,0	29,0	10,0	32,0
Fe	1,6	ArCO ₂	4,0	22,0	5,5	29,0
CrNi	1,0	ArCO ₂	10,0	27,0		-
CrNi	1,2	ArCO ₂	10,0	24,0	15,0	31,0
Al	1,0	Ar	13,0	25,0	15,0	27,0
Al	1,2	Ar	13,0	23,0	15,0	26,0

Таблица 7. Режимы полуавтоматической сварки низкоуглеродистой стали (защитный газ – углекислый газ)

Катет	Диаметр		Режим сварки			
шва (мм)	проволоки (мм)	Сила тока (A)	Напряжение на дуге (В)	Расход газа (л/мин)	электрода (мм)	Производительность (г/с)
0	0,8	100	20-22		8-10	0,43
2	1,0 110 19-20 8	8	10-12	0,41		
	1,0	150	21-22	8-10	10-12	0,82
3	1,2	180	22-23		12-15	1,09
	1,4	200	21-22		14-16	0,98
4	1,2	200	22-23	10-14	12-15	0,99
4	1,4	270	24-25		15-18	1,09
5.6	1,4	320	27-28	14-20	18-20	1,36
5-6	1,6	380	27-29		18-20	1,44

Таблица 8. Советы по сварке различных металлов

Углеродистые и низколегированные стали

- Т.к. при сварке трудно избежать образования пор (из-за недостаточного раскисления металла), следует снизить долю основного металла в наплавленном металле шва.
- Сварку обычно ведут на постоянном токе прямой полярности
- Напряжение на дуге должно быть минимально возможным, что соответствует короткой дуге

Высоколегированные (нержавеющие) и жаропрочные стали и сплавы

- 1. Защитный газ необходимо предварительно просушить или добавить к нему 2-5% кислорода. Это обеспечит плотность шва.
- Нужно поддерживать самую короткую дугу и добиваться получения шва с низким коэффициентом формы (отношения ширины шва к его толщине). Иначе в металле шва и околошовной зоны появятся горячие (кристаллизационные) трещины.
- После сварки металл должен как можно быстрее остыть. Для этого используют медные, охлажденные водой, подкладки; промежуточное остывание слоев; охлаждение швов водой. Это повысит коррозионную стойкость сварного соединения.
- 4. Сварку обычно ведут на постоянном токе прямой полярности
- 5. Необходимо минимизировать количество погонной энергии, вводимой в основной металл. Достигается соблюдением следующих условий: короткая сварочная дуга, отсутствие поперечных колебаний грелки, максимально допустимая скорость беспрерывной сварки и повторного нагрева одного и того же участка, минимально возможные токовые режимы.

Алюминий и его сплавы

- 1. Т.к. температура плавления окисной пленки значительно выше, чем у алюминия, и она расплавляется позже, необходимо строго соблюдать техники сварки алюминия.
- Высокая теплопроводность алюминия требует увеличения сварочного тока в 1,2-1,5 раза по сравнению, например, со сваркой стали.
- 3. Т.к. образуются значительные остаточные деформации, необходимо применять специальные меры и

- приспособления.
- 4. Учтите, что окисная пленка не растворяется в жидком алюминии. Это мешает формированию шва и служит причиной появления в нем металлических дефектов.
- При нагреве алюминия и его сплавов нет явных признаков их перехода в жидкое состояние. Требуется высокая квалификация сварщика для определения данных признаков.
- 6. Напряжение холостого хода источника должно быть повышенным.
- Чтобы снизить вероятность окисления металла шва, размеры сварочной ванны нужно выдерживать минимальными.

Медь и ее сплавы

- 1. Высокая теплопроводность меди (в 6 раза больше, чем у железа) требует применять сварочную дугу с увеличенной тепловой мощностью и симметричным отводом тепла из зоны сварки. Рекомендуемые типы сварных соединений стыковые и схожие с ними по характеру теплоотвода.
- 2. Большая жидкотекучесть меди (в 2-2,5 раза выше, чем у стали) осложняет сварку вертикальных и потолочных швов. Она возможна только при минимальных размерах сварочной ванны и коротком времени пребывания тепла в жидком состоянии. При сварке стыковых соединений в нижнем положении с гарантированным проплавлением во избежание прожогов необходимо применять подкладки из графита, сухого асбеста, флюсовых подушек и т.п.
- 3. Активная способность поглощать при расплавлении газы (кислород и водород), приводящая к пористости шва и горячим трещинам, требует надежной защиты металла шва и сварочных материалов от загрязнений вредными примесями.
- 4. Из-за склонности меди к окислению с образованием тугоплавких окислов необходимо применять присадочный материал с раскислителями, главные из которых фосфор, кремний и марганец.
- 5. Большой коэффициент линейного расширения меди (в 1,5 раза выше, чем у стали) влечет за собой значительные деформации и напряжения, образование горячих трещин. Устранить их можно за счет предварительного подогрева конструкций: из меди до 250-300 С, из бронзы до 500-600 С.

Общее

Таблица 9. Зависимость пиковой мощности генератора от диаметра электрода

Диаметр электрода (мм)	Пиковая мощность генератора (кВт)
2	2,5
3	3,5
4	4,5
5	5,5

Таблица 10. Оказание первой медицинской помощи пострадавшему при несчастном случае

Названи <mark>е</mark> несчастно <mark>го</mark> случая	Способ оказания первой медицинской помощи
Термические ожоги	Ожог без нарушения целостности ожоговых пузырей: Промывайте поврежденный участок под холодной водой в течение 10-15 минут. Приложите к поврежденному участку холод (например, лед) на 20-30 минут. Ожог с нарушением целостности ожоговых пузырей: Поврежденный участок прикрыть сухой чистой тканью. Приложите к поврежденному участку холод (например, лед). Внимание: запрещается промывать водой при нарушении целостности ожоговых пузырей
Ранение глаз или век	 Накрыть глаз чистой салфеткой или платком. Зафиксировать салфетку повязкой и прикрыть этой же повязкой второй глаз для прекращения движения глазных яблок. Внимание: запрещается промывать рану. Обработать 1% спиртовым зеленым бриллиантовым раствором (зеленкой)
Переломы костей конечностей	 Зафиксировать конечность с помощью складных шин. При открытых переломах сначала наложить повязку и только затем – шину.
Ранение конечности	 Накрыть рану чистой салфеткой. Перебинтовать салфетку или приклеить лейкопластырем. Внимание: Промывать рану водой или спиртовым раствором запрещается

Примечание: знание способов оказания первой помощи поможет вам или другому пострадавшему человеку в начальный момент несчастного случая, что облегчит ваше (или другого пострадавшего человека) выздоровление в будущем. Пожалуйста, внимательно изучите эту таблицу.

Таблица 11. Дефекты сварных швов

Наименован ие	Описание	Причина	Способы предупреждения и устранения
Кратеры	Усадочная раковина	Обрыв дуги.	Перед сваркой:
	в конце валика	Неправильное	Отсутствуют.
	сварного шва, не	выполнение	Во время сварки:
	заваренная до или во	конечного	Заварить кратер одним из следующих приемом.

	время выполнения последующих проходов. Является очагом развития трещин.	участка шва.	Повторным зажиганием дуги и заполнением кратера жидким металлом. Возвратно-поступательным движением электрода. Способ устранения: Повторно заварить кратер.
Поры	Несплошность, образованная газами, задержанными в расплавленном металле.	Быстрое охлаждение шва. Загрязнение кромок маслом, ржавчиной и т.п.	Перед сваркой: Электроды не должны иметь окисленную поверхность стержня. Тщательно защищать кромки от ржавчины и грязи. Прокаливать покрытые электроды, согласно паспортным режимам для каждого типа и марки. Во время сварки: Вести сварку преимущественно в нижнем положении. Использовать режимы сварки с минимальной температурой сварочной ванны. Перемешивать сварочную ванну. Выполнять швы с увеличенной шириной сварочной ванны. Способ устранения: Дефектный участок вырубают или вычищают и вновь заваривают.
Включения шлака	Ш лак, попавший в металл сварного шва.	Грязь на кромках. Малый сварочный ток. Большая скорость сварки.	Перед сваркой: Использовать электроды, обеспечивающие высокую жидкотекучесть металла сварочной ванны. Не использовать электроды с тонким и особо тонким покрытиями. Применять электроды с покрытиями, обеспечивающие низкую вязкость и хорошую смачиваемость. Во время сварки: Перемешивать жидкий металл сварочной ванны. Формировать шов минимальной ширины. Использовать режимы сварки, при которых время существования сварочной ванны минимально. Способ устранения: Дефектный участок удалить шлифовальным инструментом или заварить.
Наплыв	Избыток наплавленного металла сварного шва, натекший на поверхность основного металла, но не сплавленный с ним.	Большой сварочный ток. Неправильный наклон электрода. Излишне длинная дуга.	Перед сваркой: Выбрать оптимальный режим сварки. Строго соблюдать требования технологического процесса. Использовать соответствующие сварочные материалы. Во время сварки: Корректировать режим сварки в зависимости от схемы формирования шва. Вести сварку строго по середине разделки

			кромок. Способ устранения: Чрезмерную выпуклость удалить шлифовальным инструментом.
Подрезы	Продольное углубление отдельными участками на наружной поверхности валика сварного шва. Является концентратором напряжения.	Большой сварочный ток. Длинная дуга при сварке угловых швов – смещение электрода в сторону вертикальной стенки.	Перед сваркой: Подогревать свариваемые кромки. Использовать сварочные материалы, улучшающие смачиваемость расплава. Использовать приспособления для формирования шва в оптимальном пространственном положении. Во время сварки: Вести сварку наклонным электродом углом вперед. Точно ориентировать электрод по оси шва и длине дуги. Использовать инверторный источник питания. Способ устранения: Дефектный участок удалить шлифовальным инструментом и заварить повторно
			облицовочным швом.
Непровар	Несплошность по всей длине шва или	Малый угол скоса	Перед сваркой: Правильно выбрать вид разделки кромок.
	на его отдельном участке, возникающая из-за неспособности	вертикальных кромок. Малый зазор между ними.	Собрать кромки с соблюдением их геометрических размеров. Использовать кантователи для удобного расположения шва.
	расплавленного металла проникнуть внутрь соединения.	Загрязнение кромок. Недостаточ-	Во время сварки: Строго соблюдать режимы сварки, в частности, по сварочному току.
31	Является концентратором напряжения, вызывающим развитие трещин.	ный сварочный ток. Завышенная скорость сварки.	Вести сварку на короткой дуге. Вести сварку в "нижнем"положении или в положении в " лодочку". Способ устранения: Если несплавление доступно для повторной заварки, то корень шва в месте дефекта
Прожог	Вытекание металла	Большой ток	вычищают и заваривают повторно. Перед сваркой:
ЖС	сварочной ванны, в результате чего образуется сквозное отверстие в сварочном шве. Нарушает сплошность сварного	при малой скорости сварки. Большой зазор между кромками. Под	Использовать специальные подкладки. Оптимизировать режим сварки по скорости и мощности источника нагрева. Применять кантователи, вращатели для выбора пространственного положения, исключающего прожог. Во время сварки:
	шва.	свариваемый шов плохо поджата флюсовая подушка или медная	Применять импульсно-дуговые режимы сварки. Вести дуговую сварку "вперед" углом, а газовую "левым" способом. Строго соблюдать постоянство зазора в стыке. Способ устранения: Недостающий металл поверхности наплавить

		подкладка.	дополнительно.
			Натек удалить шлифовальным инструментом.
Трещины	Несплошность,	Резкое	Перед сваркой:
	вызванная местным	охлаждение	Правильно выбрать основной металл и
	разрушением шва и	конструкции.	сварочные материалы.
	его охлаждением,	Высокое	Выбрать оптимальный режим.
	либо действием	напряжение в	Использовать приспособления для снижения
	нагрузок. Является	жестко	напряжений, возникающие при сварке.
	концентратором	закрепленных	Во время сварки:
	напряжения и очагом	конструкциях.	Применять технику сварки, обеспечивающую
	разрушения.	Повышенное	оптимальный термический цикл и геометрию
		содержание	сварочной ванный.
		серы или	По возможности обеспечить измельчение зерен
		фосфора.	материала сварочной ванны в период ее
			кристаллизации.
			Способ устранения:
			Место образования трещины удалить
			облицовочным инструментом.
			Образовавшуюся полость заварить.

Таблица 12. Влияние сварочного тока, напряжения дуги и скорости сварки на форму и размеры шва

С увеличением сварочного тока глубина провара увеличивается, ширина шва почти не изменяется.

С повышение напряжения ширина шва резко увеличивается, а глубина провара уменьшается. Это важно учитывать при сварке тонкого металла. Несколько уменьшается и выпуклость (усиление) шва. При одном и том же напряжении ширина шва при сварке на постоянном токе (особенно обратной полярности) значительно больше, чем ширина шва при сварке на переменном токе.

С увеличением скорости (до 40-50 м/ч), сначала глубина провара возрастает, затем уменьшается. При скорости более 70-80 м/ч основной металл не успевает прогреваться, и по обеим сторонам шва возможны подрезы.

Мы постоянно улучшаем данное сварочное оборудование, поэтому некоторые части могут быть изменены для достижения лучшего качества, но главные функции и операции останутся без изменений. Мы надеемся на ваше понимание.

10. Гарантийный талон

Гарантийные обязательства

Внимание: гарантия действительна только на территории РФ.

- 1. Претензии по качеству вашего оборудования принимаются в пределах гарантийного срока (12 месяцев с даты продажи, но не более 18 месяцев с даты производства). Ремонт или замена деталей, преждевременно вышедших из строя по вине предприятия-изготовителя, осуществляется бесплатно при условии соблюдения требования по монтажу, эксплуатации и периодическому техническому обслуживанию.
- 2. Прием изделия в гарантийную мастерскую производится только при наличии всех комплектующих.
- 3. Предметом гарантии не является неполная комплектация изделия, которая могла быть обнаружена при продаже изделия. Претензии от третьих лиц не принимаются.
- 4. Гарантийные обязательства не распространяются на расходные материалы.
- 5. Гарантийные обязательства не распространяются на аппараты:
 - имеющие повреждения, вызванные различными внешними воздействиями (мех аническим), а так же проникновением внутрь изделия посторонних предметов (насекомых, животных, пыли) или жидкостей;
 - подвергавшиеся вскрытию, ремонту или модификации вне уполномоченной сервисной мастерской;
 - имеющие повреждения защитной пломбы (наклейки);
 - использовавшиеся не по назначению;
 - поврежденные в результате подключения к сети с несоответствующими номинальными параметрами, заявленными в руководстве по эксплуатации.
- 6. Покупателю может быть отказано в гарантийном ремонте если:
 - гарантийный талон утрачен или в него были внесены несанкционированные дополнения, исправления, а также наличие подчистки записей;
 - невозможно идентифицировать серийный номер оборудования, печать или дату продажи на гарантийном талоне.
- 7. Использование с автономными дизельными или бензиновыми генераторами требует дополнительного внимания к условиям эксплуатации. Убедитесь, что используемый генератор удовлетворяет требованиям по мощности и параметрам электросети. Неисправность аппарата, возникшая при подключении к генератору, имеющему нестабильные выходные характеристики, не покрываются гарантией. Рекомендуем принять необходимые меры для сохранности аппарата: установка фильтров, стабилизаторов и т.д.

Модель:	Заводской номер:
Название фирмы продавца:	Печать продавца:
Гарантийный срок: 12 месяцев с даты продажи, но не более 18 месяцев с даты производства	
Дата продажи:	Подпись продавца:
Отметк	а о ремонте:
Отметк	а о ремонте:

ОСНОВНЫЕ ПРЕИМУЩЕСТВА ПОЛУАВТОМАТОВ PROFI:

- ✓ ПРОФЕССИОНАЛЬНАЯ СЕРИЯ
- ✓ 2 ЦИФРОВЫХ ДИСПЛЕЯ
- ✓ ЗАЩИТА ОТ ПЕРЕГРЕВА
- ✓ КАТУШКА 15 кг
- ✓ ИНДУКЦИЯ

SVARMA

